Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
OMICS ; 27(5): 237-244, 2023 05.
Article in English | MEDLINE | ID: covidwho-2318708

ABSTRACT

COVID-19 caused by the SARS-CoV-2 infection is a systemic disease that affects multiple organs, biological pathways, and cell types. A systems biology approach would benefit the study of COVID-19 in the pandemic as well as the endemic state. Notably, patients with COVID-19 have dysbiosis of lung microbiota whose functional relevance to the host is largely unknown. We carried out a systems biology investigation of the impact of lung microbiome-derived metabolites on host immune system during COVID-19. RNAseq was performed to identify the host-specific pro- and anti-inflammatory differentially expressed genes (DEGs) in bronchial epithelium and alveolar cells during SARS-CoV-2 infection. The overlapping DEGs were harnessed to construct an immune network while their key transcriptional regulator was deciphered. We identified 68 overlapping genes from both cell types to construct the immune network, and Signal Transducer and Activator of Transcription 3 (STAT3) was found to regulate the majority of the network proteins. Furthermore, thymidine diphosphate produced from the lung microbiome had the highest affinity with STAT3 (-6.349 kcal/mol) than the known STAT3 inhibitors (n = 410), with an affinity ranging from -5.39 to 1.31 kcal/mol. In addition, the molecular dynamic studies showed distinguishable changes in the behavior of the STAT3 complex when compared with free STAT3. Overall, our results provide new observations on the importance of lung microbiome metabolites that regulate the host immune system in patients with COVID-19, and may open up new avenues for preventive medicine and therapeutics innovation.


Subject(s)
COVID-19 , Microbiota , Humans , SARS-CoV-2 , STAT3 Transcription Factor/genetics , Lung
2.
J Infect Public Health ; 15(6): 662-669, 2022 May 13.
Article in English | MEDLINE | ID: covidwho-1945691

ABSTRACT

BACKGROUND: SARS-CoV-2, an emerged strain of corona virus family became almost serious health concern worldwide. Despite vaccines availability, reports suggest the occurrence of SARS-CoV-2 infection even in a vaccinated population. With frequent evolution and expected multiple COVID-19 waves, improved preventive, diagnostic, and treatment measures are required. In recent times, phytochemicals have gained attention due to their therapeutic characteristics and are suggested as alternative and complementary treatments for infectious diseases. This present study aimed to identify potential inhibitors against reported protein targets of SARS-CoV-2. METHODOLOGY: We computationally investigated potential SARS-CoV-2 protein targets from the literature and collected druggable phytochemicals from Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) database. Further, we implemented a systematic workflow of molecular docking, dynamic simulations and generalized born surface area free-energy calculations (MM-GBSA). RESULTS: Extensive literature search and assessment of 1508 articles identifies 13 potential SARS-CoV-2 protein targets. We screened 501 druggable phytochemicals with proven biological activities. Analysis of 6513(501 *13) docked phytochemicals complex, 26 were efficient against SARS-CoV-2. Amongst, 4,8-dihydroxysesamin and arboreal from Gmelina arborea were ranked potential against most of the targets with binding energy ranging between - 10.7 to - 8.2 kcal/mol. Additionally, comparative docking with known drugs such as arbidol (-6.6 to -5.1 kcal/mol), favipiravir (-5.5 to -4.5 kcal/mol), hydroxychloroquine (-6.5 to -5.1 kcal/mol), and remedesivir (-8.0 to -5.3 kcal/mol) revealed equal/less affinity than 4,8-dihydroxysesamin and arboreal. Interestingly, the nucleocapsid target was found commonly inhibited by 4,8-dihydroxysesamin and arboreal. Molecular dynamic simulation and Molecular mechanics generalized born surface area (MM-GBSA)calculations reflect that both the compounds possess high inhibiting potential against SARS-CoV-2 including the recently emerged Omicron variant (B.1.1.529). CONCLUSION: Overall our study imparts the usage of phytochemicals as antiviral agents for SARS-CoV-2 infection. Additional in vitro and in vivo testing of these phytochemicals is required to confirm their potency.

SELECTION OF CITATIONS
SEARCH DETAIL